Web18 de dez. de 2024 · We organize a table of regular graphs with minimal diameters and minimal mean path lengths, large bisection widths and high degrees of symmetries, obtained by enumerations on supercomputers. These optimal graphs, many of which are newly discovered, may find wide applications, for example, in design of network topologies. Web14 de abr. de 2024 · 5 Conclusion. In this work, we propose a novel approach TieComm, which learns an overlay communication topology for multi-agent cooperative reinforcement learning inspired by tie theory. We exploit the topology into strong ties (nearby agents) and weak ties (distant agents) by our reasoning policy.
Hierarchical Graph Neural Networks for Few-Shot Learning
Web1 de jan. de 2024 · For the bottom-up reasoning, we design intra-class k-nearest neighbor pooling (intra-class knnPool) and inter-class knnPool layers, to conduct hierarchical learning for both the intra- and inter-class nodes. For the top-down reasoning, we propose to utilize graph unpooling (gUnpool) layers to restore the down-sampled graph into its … Web14 de nov. de 2024 · The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this … cancer council sensitive sunscreen review
[PDF] Modeling and design of heterogeneous hierarchical …
WebNeurIPS - Hierarchical Graph Representation Learning with ... Web25 de fev. de 2024 · Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). Web14 de nov. de 2024 · Hierarchical graph representation learning with differentiable pooling. In NIPS, 4800-4810. Anrl: Attributed network representation learning via deep neural networks. Jan 2024; 3155-3161; cancer council healthy lunch box kit